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Motivation: Need for Derivatives

For unsymmetric collocation you have to take A

For symmetric collocation you have to take A and A2
For divergence-free vector fields derived from kernels K
you need (VV' — A - Id)K

Students never get derivatives right
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Idea: Recursion

Observation: Derivatives of RBFs often are (modified)
RBFs

Assume RBF family {¢p(r)}, parametrized by p

Express derivatives via ¢p(r), ¢p—1(r) etc.

Observation: Strange pattern of derivative recursions
Observation: The pattern comes from the f-form of RBFs
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Idea: Recursion on f-form

Write ¢p(r) = fo(r?/2) or ¢p(V28) = fp(S), s =1r2/2
Well-known from Bocher-Schoenberg theory
Goal: Express f, derivatives via f,_1, fp_2 etc.
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Example: Gaussian

o(r) = exp(—12/2)
f(s) = exp(—s)

f'(s) = —f(s)
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Example: Multiquadrics

dm(r) = (1+r2/2)""
fm(s)=(1+s)™"

fm(8) = =M fns1(s)
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Example: Powers

dm(r) =r"
fm(s) = (V25)"

d
e 2s=1/V2s

fn(s) = m(V2s)""1/V2s = mfy_2(s)
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Example: Thin-Plate Splines

dom(r) = r*Mlogr

fom(s) = (V25)2™log(v/2s)

f.(s) = 2m(v2s)2™"log(v/2s)/v2s + (v/25)?™/(2s)
= 2m f2m_2(S) + (2S)m_1
~—

= polynomial

The polynomial part vanishes
in the conditional positive definite setting

Dealing with powers is clear
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Matérn-Sobolev Kernels

ou(r) = r'K,(r)
f,(s) = (V25)'K,(V2s)

2 (KA = 2K (2)
f(s) = —(V2s)"K,_1(v2s)/V2s = —1,_1(s)
This would not work without s = r?/2

v=m-d/2=v—1
meansm=m-1lord=d+2




Wendland Kernels

da k in C?%, SPD on RY, minimal degree |d/2] + 3k + 1

do(r)
(I¢)(r)
bak(r)
fd7k(S)
(I¢)'(r)

fi.k(s)

(1-n4%

[ to(t)dt

I 1a/2) 441 (r)

¢ /2] k11 (V28)

—ro(r)
—V25 K10 412 1 k+1(V28) /V2s

15716 (d12)/2) +k—141(V2S)
—Tfar2.k-1(8)

This would not work without s = r?/2




Laplacian

Ap(r)y = ¢"(r)+(d )¢/() (singular!)
o(r) = f(r?/2)

¢'(r) = rf(r*/2)
¢"(r) = r2f'(r’/2) + f(r?/2)
Ay = r?f"(r?2/2)+df(r?/2) = 2sf"(s) + df'(s)

N2 = 45%f4)(s) + 4sdfC)(s) + a?f"(s)

No visible singularities in f-form
Other derivatives via e.g.

%¢(r) = ¢(n)> = rf(r?/2)% = xf'(s)
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General Result

Theorem (Dimension walk)
Radial Fourier transform F, on R? implies Fd+2f,’) = —Fyfy

Closedness Assumption between {f,}, and {gq}q
Fafo = 9aa,p), Fa9q = f8(a,q)

Theorem:

fo = —Fay2Fafp = —Ta(a12,Ad,0))

No separate derivative program needed
Derivatives and dimensions may be fractional




Proof of Dimension Walk

Radial Fourier transform F, for v = (d — 2)/2:

(FE)D) = / (5" H, (st)ds
f(s) = / (Fuf) ()t H,(ts)at

iy 2 k
(2/2)"d(2) = Hi(- z2/4) S0 Ry
fi(s) = /0 (F.£) (Ot tH. (ts)dlt

= —/ (FE) (T H, 4 (ts)dt
= —F, 4 Fuf)(s)
Foiify = —Fh




Remarks on Implementation




Matrix Formulation

Kernel matrix ¢(||x; — ykll2) = f(||x; — ¥«||5/2)

function dsgh=distsgh (X, Y)

% X and Y are matrices with points as rows
nX=length (X (:,1));nY=length (Y (:,1));
Xsh=sum ((X.*X) ") /2; Ysh=sum((Y.*Y)')/2;

dsgh=repmat (Xsh’,1,nY)+repmat (Ysh, nX, 1) -XxY’;
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Matrix Formulation

Kernel matrix ¢(||x; — ykll2) = f(I1X; — yklI3/2)
Write f as program on a matrix S = (||x; — yk||3/2)
Use [1x; — yill3/2 = IXil15/2 + 1yl /2 — (%, &)

function dsgh=distsgh (X, Y)

% X and Y are matrices with points as rows
nX=length(X(:,1));nY=length(Y(:,1));
Xsh=sum ((X.*X)’)/2; Ysh=sum((Y.*Y)')/2;
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Matrix Formulation

Kernel matrix (|| — ykll2) = f(I1x; — y«l[3/2)
Write f as program on a matrix S = (||x; — yk||3/2)
Use [x; — y«ll3/2 = Ixil15/2 + llykl/2 = (%, y«)
No square roots, no loops for this
function dsgh=distsgh (X, Y)
% X and Y are matrices with points as rows
nX=length(X(:,1));nY=length(Y(:,1));
Xsh=sum ((X.*X)")/2; Ysh=sum ((Y.*Y)")/2;
dsgh=repmat (Xsh’,1,nY)+repmat (¥Ysh,nX, 1) -
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Calculation of f-Form

S=distsgh (X, Y);

F=frbf (S, k) calculates f¥(S) on matrix S

RBF type, scale, parameters controlled by globals
E.g.: Laplacianis dxfrbf (S, 1) +2xS.xfrbf (S, 2)
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Summary

You don’t need to program derivatives,

if you program a whole family of RBFs

that is closed under double Fourier transforms
wrt. different dimensions

Available as Technical Report:
http://num.math.uni-goettingen.de/schaback/
research/papers/MPfKBM.pdf

Version of 2011, dating back to 2008




Caveat

For low order Wendland functions:




Caveat

For low order Wendland functions:
numerical problems at zero




Caveat

For low order Wendland functions:
numerical problems at zero
Calculating A needs f(ljyk = _fd+2,k—1’ f(IJ’/,k = fd+4,k—2




Caveat

For low order Wendland functions:

numerical problems at zero

Calculating A needs fé,’k = —lfg4o k-1, f({j’k = fgra k-2
For k = 1 the function fy x is in C? = C?, but
calculation goes down to fy 4,1




Caveat

For low order Wendland functions:

numerical problems at zero

Calculating A needs fé,’k = —lfg4o k-1, f({j’k = fgra k-2
For k = 1 the function fy is in C2 = C?¥, but
calculation goes down to fy 4,1

Example: d =2, k=1

1 3(1 - r)?
d6,-1(r) = " ¢a(r) = —7%(1 -} = #




Caveat

For low order Wendland functions:

numerical problems at zero

Calculating A needs fé,’k = —lfg4o k-1, f({j’k = fgra k-2
For k = 1 the function fy x is in C? = C?, but
calculation goes down to fy 4,1

Example: d =2, k=1

1d

Y-
d6.1(r) = 17"da(r) =~ —(1 - 1% = 31—

r

Theory is OK: Cancellation of singularities at zero




Caveat

For low order Wendland functions:
numerical problems at zero
Calculating A needs f({l,’k = —lfg4o k-1, f({j’k = fgra k-2
For k = 1 the function fy is in C2 = C?¥, but
calculation goes down to fy 4,1
Example: d =2, k=1

1d

d6.1(r) =1""ga(r) = ———(1 =)} =

Theory is OK: Cancellation of singularities at zero
Laplacian needs f3 ; = r2gg _1(r)

3(1-r)3
r
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Open Problems

Deal with Wendland case properly

Make routines more efficient,
e.g. Laplacian via dxfrbf (S, 1) +2xS.xfrbf (S, 2)

Dear with sparsity properly
Implement basis transformations
Extend to a general toolkit




Thank You!

For references, see

http://www.num.math.uni-goettingen.de/schaback/research.html
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