
Programming Derivatives of RBFs

Robert Schaback

Georg-August-Universität Göttingen
Akademie der Wissenschaften zu Göttingen

ICERM August 2017



Overview

Motivation

Examples

Theory

Remarks on Implementation

Summary and Outlook



Motivation



Motivation: Need for Derivatives



Motivation: Need for Derivatives

For unsymmetric collocation you have to take ∆



Motivation: Need for Derivatives

For unsymmetric collocation you have to take ∆

For symmetric collocation you have to take ∆ and ∆2



Motivation: Need for Derivatives

For unsymmetric collocation you have to take ∆

For symmetric collocation you have to take ∆ and ∆2

For divergence-free vector fields derived from kernels K

you need (∇∇T −∆ · Id)K



Motivation: Need for Derivatives

For unsymmetric collocation you have to take ∆

For symmetric collocation you have to take ∆ and ∆2

For divergence-free vector fields derived from kernels K

you need (∇∇T −∆ · Id)K

Students never get derivatives right



Idea: Recursion



Idea: Recursion

Observation: Derivatives of RBFs often are (modified)

RBFs



Idea: Recursion

Observation: Derivatives of RBFs often are (modified)

RBFs

Assume RBF family {φp(r)}p parametrized by p



Idea: Recursion

Observation: Derivatives of RBFs often are (modified)

RBFs

Assume RBF family {φp(r)}p parametrized by p

Express derivatives via φp(r), φp−1(r) etc.



Idea: Recursion

Observation: Derivatives of RBFs often are (modified)

RBFs

Assume RBF family {φp(r)}p parametrized by p

Express derivatives via φp(r), φp−1(r) etc.

Observation: Strange pattern of derivative recursions



Idea: Recursion

Observation: Derivatives of RBFs often are (modified)

RBFs

Assume RBF family {φp(r)}p parametrized by p

Express derivatives via φp(r), φp−1(r) etc.

Observation: Strange pattern of derivative recursions

Observation: The pattern comes from the f -form of RBFs



Idea: Recursion on f -form



Idea: Recursion on f -form

Write φp(r) = fp(r
2/2) or φp(

√
2s) = fp(s), s = r2/2



Idea: Recursion on f -form

Write φp(r) = fp(r
2/2) or φp(

√
2s) = fp(s), s = r2/2

Well-known from Bocher-Schoenberg theory



Idea: Recursion on f -form

Write φp(r) = fp(r
2/2) or φp(

√
2s) = fp(s), s = r2/2

Well-known from Bocher-Schoenberg theory

Goal: Express fp derivatives via fp−1, fp−2 etc.



Examples



Example: Gaussian

φ(r) = exp(−r2/2)



Example: Gaussian

φ(r) = exp(−r2/2)

f (s) = exp(−s)



Example: Gaussian

φ(r) = exp(−r2/2)

f (s) = exp(−s)

f ′(s) = −f (s)



Example: Multiquadrics

φm(r) = (1 + r2/2)−m



Example: Multiquadrics

φm(r) = (1 + r2/2)−m

fm(s) = (1 + s)−m



Example: Multiquadrics

φm(r) = (1 + r2/2)−m

fm(s) = (1 + s)−m

f ′m(s) = −m fm+1(s)



Example: Powers

φm(r) = rm



Example: Powers

φm(r) = rm

fm(s) = (
√

2s)m



Example: Powers

φm(r) = rm

fm(s) = (
√

2s)m

d

ds

√
2s = 1/

√
2s



Example: Powers

φm(r) = rm

fm(s) = (
√

2s)m

d

ds

√
2s = 1/

√
2s

f ′m(s) = m (
√

2s)m−1/
√

2s = m fm−2(s)



Example: Thin-Plate Splines

φ2m(r) = r2m log r



Example: Thin-Plate Splines

φ2m(r) = r2m log r

f2m(s) = (
√

2s)2m log(
√

2s)



Example: Thin-Plate Splines

φ2m(r) = r2m log r

f2m(s) = (
√

2s)2m log(
√

2s)

f ′2m(s) = 2m(
√

2s)2m−1 log(
√

2s)/
√

2s + (
√

2s)2m/(2s)

= 2m f2m−2(s) + (2s)m−1

︸ ︷︷ ︸

= polynomial



Example: Thin-Plate Splines

φ2m(r) = r2m log r

f2m(s) = (
√

2s)2m log(
√

2s)

f ′2m(s) = 2m(
√

2s)2m−1 log(
√

2s)/
√

2s + (
√

2s)2m/(2s)

= 2m f2m−2(s) + (2s)m−1

︸ ︷︷ ︸

= polynomial

The polynomial part vanishes

in the conditional positive definite setting



Example: Thin-Plate Splines

φ2m(r) = r2m log r

f2m(s) = (
√

2s)2m log(
√

2s)

f ′2m(s) = 2m(
√

2s)2m−1 log(
√

2s)/
√

2s + (
√

2s)2m/(2s)

= 2m f2m−2(s) + (2s)m−1

︸ ︷︷ ︸

= polynomial

The polynomial part vanishes

in the conditional positive definite setting

Dealing with powers is clear



Matérn-Sobolev Kernels

φν(r) = rνKν(r)



Matérn-Sobolev Kernels

φν(r) = rνKν(r)

fν(s) = (
√

2s)νKν(
√

2s)



Matérn-Sobolev Kernels

φν(r) = rνKν(r)

fν(s) = (
√

2s)νKν(
√

2s)

d

dz
(zνKν(z)) = −zνKν−1(z)



Matérn-Sobolev Kernels

φν(r) = rνKν(r)

fν(s) = (
√

2s)νKν(
√

2s)

d

dz
(zνKν(z)) = −zνKν−1(z)

f ′ν(s) = −(
√

2s)νKν−1(
√

2s)/
√

2s = −fν−1(s)



Matérn-Sobolev Kernels

φν(r) = rνKν(r)

fν(s) = (
√

2s)νKν(
√

2s)

d

dz
(zνKν(z)) = −zνKν−1(z)

f ′ν(s) = −(
√

2s)νKν−1(
√

2s)/
√

2s = −fν−1(s)

This would not work without s = r2/2



Matérn-Sobolev Kernels

φν(r) = rνKν(r)

fν(s) = (
√

2s)νKν(
√

2s)

d

dz
(zνKν(z)) = −zνKν−1(z)

f ′ν(s) = −(
√

2s)νKν−1(
√

2s)/
√

2s = −fν−1(s)

This would not work without s = r2/2

ν = m − d/2 ⇒ ν − 1

means m ⇒ m − 1 or d ⇒ d + 2



Wendland Kernels

φd ,k in C2k , SPD on R
d , minimal degree ⌊d/2⌋+ 3k + 1

φℓ(r) := (1 − r)ℓ+

(Iφ)(r) :=
∫∞

r
tφ(t)dt

φd ,k (r) := Ikφ⌊d/2⌋+k+1(r)

fd ,k (s) := Ikφ⌊d/2⌋+k+1(
√

2s)

(Iφ)′(r) = −rφ(r)

f ′d ,k (s) = −
√

2s Ik−1φ⌊d/2⌋+k+1(
√

2s)/
√

2s

= −Ik−1φ⌊(d+2)/2⌋+k−1+1(
√

2s)

= −fd+2,k−1(s)

This would not work without s = r2/2



Laplacian

∆φ(r) = φ′′(r) + (d − 1)
φ′(r)

r
(singular!)

φ(r) = f (r2/2)

φ′(r) = r f ′(r2/2)

φ′′(r) = r2 f ′′(r2/2) + f ′(r2/2)

∆φ = r2 f ′′(r2/2) + d f ′(r2/2) = 2sf ′′(s) + df ′(s)

∆2φ = 4s2f (4)(s) + 4sdf (3)(s) + d2f ′′(s)

No visible singularities in f -form

Other derivatives via e.g.

d

dx
φ(r) = φ′(r)

x

r
= r f ′(r2/2)

x

r
= xf ′(s)



Theory



General Result

Theorem (Dimension walk)

Radial Fourier transform Fd on R
d implies Fd+2f ′p = −Fd fp



General Result

Theorem (Dimension walk)

Radial Fourier transform Fd on R
d implies Fd+2f ′p = −Fd fp

Closedness Assumption between {fp}p and {gq}q

Fd fp = gA(d ,p), Fdgq = fB(d ,q)



General Result

Theorem (Dimension walk)

Radial Fourier transform Fd on R
d implies Fd+2f ′p = −Fd fp

Closedness Assumption between {fp}p and {gq}q

Fd fp = gA(d ,p), Fdgq = fB(d ,q)

Theorem:

f ′p = −Fd+2Fd fp = −fB(d+2,A(d ,p))



General Result

Theorem (Dimension walk)

Radial Fourier transform Fd on R
d implies Fd+2f ′p = −Fd fp

Closedness Assumption between {fp}p and {gq}q

Fd fp = gA(d ,p), Fdgq = fB(d ,q)

Theorem:

f ′p = −Fd+2Fd fp = −fB(d+2,A(d ,p))

No separate derivative program needed



General Result

Theorem (Dimension walk)

Radial Fourier transform Fd on R
d implies Fd+2f ′p = −Fd fp

Closedness Assumption between {fp}p and {gq}q

Fd fp = gA(d ,p), Fdgq = fB(d ,q)

Theorem:

f ′p = −Fd+2Fd fp = −fB(d+2,A(d ,p))

No separate derivative program needed

Derivatives and dimensions may be fractional



Proof of Dimension Walk

Radial Fourier transform Fν for ν = (d − 2)/2:

(Fν fp)(t) =

∫ ∞

0

fp(s)s
νHν(st)ds

fp(s) =

∫ ∞

0

(Fν fp)(t)t
νHν(ts)dt

(z/2)−ν Jν(z) = Hν(−z2/4) =
∑∞

k=0
(−z2/4)k

k !Γ(k+ν+1)

H ′
ν = −Hν+1, d ⇒ d + 2

f ′p(s) =

∫ ∞

0

(Fν fp)(t)t
ν tH ′

ν(ts)dt

= −
∫ ∞

0

(Fν fp)(t)t
ν+1H ′

ν+1(ts)dt

= −F−1
ν+1Fν(fp)(s)

Fν+1f ′p = −Fν fp



Remarks on Implementation



Matrix Formulation

Kernel matrix φ(‖xj − yk‖2) = f (‖xj − yk‖2
2/2)

function dsqh=distsqh(X, Y)

% X and Y are matrices with points as rows

nX=length(X(:,1));nY=length(Y(:,1));

Xsh=sum((X.*X)’)/2; Ysh=sum((Y.*Y)’)/2;

dsqh=repmat(Xsh’,1,nY)+repmat(Ysh,nX,1)-X*Y’;



Matrix Formulation

Kernel matrix φ(‖xj − yk‖2) = f (‖xj − yk‖2
2/2)

Write f as program on a matrix S = (‖xj − yk‖2
2/2)

function dsqh=distsqh(X, Y)

% X and Y are matrices with points as rows

nX=length(X(:,1));nY=length(Y(:,1));

Xsh=sum((X.*X)’)/2; Ysh=sum((Y.*Y)’)/2;

dsqh=repmat(Xsh’,1,nY)+repmat(Ysh,nX,1)-X*Y’;



Matrix Formulation

Kernel matrix φ(‖xj − yk‖2) = f (‖xj − yk‖2
2/2)

Write f as program on a matrix S = (‖xj − yk‖2
2/2)

Use ‖xj − yk‖2
2/2 = ‖xj‖2

2/2 + ‖yk‖2/2 − (xj , yk )

function dsqh=distsqh(X, Y)

% X and Y are matrices with points as rows

nX=length(X(:,1));nY=length(Y(:,1));

Xsh=sum((X.*X)’)/2; Ysh=sum((Y.*Y)’)/2;

dsqh=repmat(Xsh’,1,nY)+repmat(Ysh,nX,1)-X*Y’;



Matrix Formulation

Kernel matrix φ(‖xj − yk‖2) = f (‖xj − yk‖2
2/2)

Write f as program on a matrix S = (‖xj − yk‖2
2/2)

Use ‖xj − yk‖2
2/2 = ‖xj‖2

2/2 + ‖yk‖2/2 − (xj , yk )

No square roots, no loops for this

function dsqh=distsqh(X, Y)

% X and Y are matrices with points as rows

nX=length(X(:,1));nY=length(Y(:,1));

Xsh=sum((X.*X)’)/2; Ysh=sum((Y.*Y)’)/2;

dsqh=repmat(Xsh’,1,nY)+repmat(Ysh,nX,1)-X*Y’;



Calculation of f -Form

S=distsqh(X,Y);



Calculation of f -Form

S=distsqh(X,Y);

F=frbf(S,k) calculates f k (S) on matrix S



Calculation of f -Form

S=distsqh(X,Y);

F=frbf(S,k) calculates f k (S) on matrix S

RBF type, scale, parameters controlled by globals



Calculation of f -Form

S=distsqh(X,Y);

F=frbf(S,k) calculates f k (S) on matrix S

RBF type, scale, parameters controlled by globals

E.g.: Laplacian is d*frbf(S,1)+2*S.*frbf(S,2)



Summary and Outlook



Summary

You don’t need to program derivatives,

if you program a whole family of RBFs

that is closed under double Fourier transforms

wrt. different dimensions



Summary

You don’t need to program derivatives,

if you program a whole family of RBFs

that is closed under double Fourier transforms

wrt. different dimensions

Available as Technical Report:

http://num.math.uni-goettingen.de/schaback/

research/papers/MPfKBM.pdf



Summary

You don’t need to program derivatives,

if you program a whole family of RBFs

that is closed under double Fourier transforms

wrt. different dimensions

Available as Technical Report:

http://num.math.uni-goettingen.de/schaback/

research/papers/MPfKBM.pdf

Version of 2011, dating back to 2008



Caveat

For low order Wendland functions:



Caveat

For low order Wendland functions:

numerical problems at zero



Caveat

For low order Wendland functions:

numerical problems at zero

Calculating ∆ needs f ′d ,k = −fd+2,k−1, f ′′d ,k = fd+4,k−2



Caveat

For low order Wendland functions:

numerical problems at zero

Calculating ∆ needs f ′d ,k = −fd+2,k−1, f ′′d ,k = fd+4,k−2

For k = 1 the function fd ,k is in C2 = C2k , but

calculation goes down to fd+4,−1



Caveat

For low order Wendland functions:

numerical problems at zero

Calculating ∆ needs f ′d ,k = −fd+2,k−1, f ′′d ,k = fd+4,k−2

For k = 1 the function fd ,k is in C2 = C2k , but

calculation goes down to fd+4,−1

Example: d = 2, k = 1

φ6,−1(r) = I−1φ3(r) = −1

r

d

dr
(1 − r)3

+ =
3(1 − r)2

+

r



Caveat

For low order Wendland functions:

numerical problems at zero

Calculating ∆ needs f ′d ,k = −fd+2,k−1, f ′′d ,k = fd+4,k−2

For k = 1 the function fd ,k is in C2 = C2k , but

calculation goes down to fd+4,−1

Example: d = 2, k = 1

φ6,−1(r) = I−1φ3(r) = −1

r

d

dr
(1 − r)3

+ =
3(1 − r)2

+

r

Theory is OK: Cancellation of singularities at zero



Caveat

For low order Wendland functions:

numerical problems at zero

Calculating ∆ needs f ′d ,k = −fd+2,k−1, f ′′d ,k = fd+4,k−2

For k = 1 the function fd ,k is in C2 = C2k , but

calculation goes down to fd+4,−1

Example: d = 2, k = 1

φ6,−1(r) = I−1φ3(r) = −1

r

d

dr
(1 − r)3

+ =
3(1 − r)2

+

r

Theory is OK: Cancellation of singularities at zero

Laplacian needs f ′′2,1 = r2φ6,−1(r)



Open Problems

Deal with Wendland case properly



Open Problems

Deal with Wendland case properly

Make routines more efficient,

e.g. Laplacian via d*frbf(S,1)+2*S.*frbf(S,2)



Open Problems

Deal with Wendland case properly

Make routines more efficient,

e.g. Laplacian via d*frbf(S,1)+2*S.*frbf(S,2)

Dear with sparsity properly



Open Problems

Deal with Wendland case properly

Make routines more efficient,

e.g. Laplacian via d*frbf(S,1)+2*S.*frbf(S,2)

Dear with sparsity properly

Implement basis transformations



Open Problems

Deal with Wendland case properly

Make routines more efficient,

e.g. Laplacian via d*frbf(S,1)+2*S.*frbf(S,2)

Dear with sparsity properly

Implement basis transformations

Extend to a general toolkit



Thank You!

For references, see

http://www.num.math.uni-goettingen.de/schaback/research.html


	Motivation
	Examples
	Theory
	Remarks on Implementation
	Summary and Outlook

