Programming Derivatives of RBFs

Robert Schaback

Georg-August-Universität Göttingen
Akademie der Wissenschaften zu Göttingen

ICERM August 2017

Overview

Motivation

Examples

Theory

Remarks on Implementation

Summary and Outlook

Motivation

Motivation: Need for Derivatives

Motivation: Need for Derivatives

For unsymmetric collocation you have to take Δ

Motivation: Need for Derivatives

For unsymmetric collocation you have to take Δ
For symmetric collocation you have to take Δ and Δ^{2}

Motivation: Need for Derivatives

For unsymmetric collocation you have to take Δ
For symmetric collocation you have to take Δ and Δ^{2}
For divergence-free vector fields derived from kernels K you need $\left(\nabla \nabla^{T}-\Delta \cdot l d\right) K$

Motivation: Need for Derivatives

For unsymmetric collocation you have to take Δ
For symmetric collocation you have to take Δ and Δ^{2}
For divergence-free vector fields derived from kernels K you need $\left(\nabla \nabla^{T}-\Delta \cdot I d\right) K$
Students never get derivatives right

Idea: Recursion

Idea: Recursion

Observation: Derivatives of RBFs often are (modified) RBFs

Idea: Recursion

Observation: Derivatives of RBFs often are (modified) RBFs
Assume RBF family $\left\{\phi_{p}(r)\right\}_{p}$ parametrized by p

Idea: Recursion

Observation: Derivatives of RBFs often are (modified) RBFs
Assume RBF family $\left\{\phi_{p}(r)\right\}_{p}$ parametrized by p
Express derivatives via $\phi_{p}(r), \phi_{p-1}(r)$ etc.

Idea: Recursion

Observation: Derivatives of RBFs often are (modified) RBFs
Assume RBF family $\left\{\phi_{p}(r)\right\}_{p}$ parametrized by p
Express derivatives via $\phi_{p}(r), \phi_{p-1}(r)$ etc.
Observation: Strange pattern of derivative recursions

Idea: Recursion

Observation: Derivatives of RBFs often are (modified) RBFs
Assume RBF family $\left\{\phi_{p}(r)\right\}_{p}$ parametrized by p
Express derivatives via $\phi_{p}(r), \phi_{p-1}(r)$ etc.
Observation: Strange pattern of derivative recursions
Observation: The pattern comes from the f-form of RBFs

Idea: Recursion on f-form

Idea: Recursion on f-form

Write $\phi_{p}(r)=f_{p}\left(r^{2} / 2\right)$ or $\phi_{p}(\sqrt{2 s})=f_{p}(s), s=r^{2} / 2$

Idea: Recursion on f-form

Write $\phi_{p}(r)=f_{p}\left(r^{2} / 2\right)$ or $\phi_{p}(\sqrt{2 s})=f_{p}(s), s=r^{2} / 2$
Well-known from Bocher-Schoenberg theory

Idea: Recursion on f-form

Write $\phi_{p}(r)=f_{p}\left(r^{2} / 2\right)$ or $\phi_{p}(\sqrt{2 s})=f_{p}(s), s=r^{2} / 2$
Well-known from Bocher-Schoenberg theory
Goal: Express f_{p} derivatives via f_{p-1}, f_{p-2} etc.

Examples

Example: Gaussian

$$
\phi(r)=\exp \left(-r^{2} / 2\right)
$$

Example: Gaussian

$$
\phi(r)=\exp \left(-r^{2} / 2\right)
$$

$$
f(s)=\exp (-s)
$$

Example: Gaussian

$$
\begin{gathered}
\phi(r)=\exp \left(-r^{2} / 2\right) \\
f(s)=\exp (-s) \\
f^{\prime}(s)=-f(s)
\end{gathered}
$$

Example: Multiquadrics

$$
\phi_{m}(r)=\left(1+r^{2} / 2\right)^{-m}
$$

Example: Multiquadrics

$$
\begin{gathered}
\phi_{m}(r)=\left(1+r^{2} / 2\right)^{-m} \\
f_{m}(s)=(1+s)^{-m}
\end{gathered}
$$

Example: Multiquadrics

$$
\begin{gathered}
\phi_{m}(r)=\left(1+r^{2} / 2\right)^{-m} \\
f_{m}(s)=(1+s)^{-m} \\
f_{m}^{\prime}(s)=-m f_{m+1}(s)
\end{gathered}
$$

Example: Powers

$$
\phi_{m}(r)=r^{m}
$$

Example: Powers

$$
\begin{gathered}
\phi_{m}(r)=r^{m} \\
f_{m}(s)=(\sqrt{2 s})^{m}
\end{gathered}
$$

Example: Powers

$$
\begin{gathered}
\phi_{m}(r)=r^{m} \\
f_{m}(s)=(\sqrt{2 s})^{m} \\
\frac{d}{d s} \sqrt{2 s}=1 / \sqrt{2 s}
\end{gathered}
$$

Example: Powers

$$
\begin{gathered}
\phi_{m}(r)=r^{m} \\
f_{m}(s)=(\sqrt{2 s})^{m} \\
\frac{d}{d s} \sqrt{2 s}=1 / \sqrt{2 s} \\
f_{m}^{\prime}(s)=m(\sqrt{2 s})^{m-1} / \sqrt{2 s}=m f_{m-2}(s)
\end{gathered}
$$

Example: Thin-Plate Splines

$$
\phi_{2 m}(r)=r^{2 m} \log r
$$

Example: Thin-Plate Splines

$$
\begin{gathered}
\phi_{2 m}(r)=r^{2 m} \log r \\
f_{2 m}(s)=(\sqrt{2 s})^{2 m} \log (\sqrt{2 s})
\end{gathered}
$$

Example: Thin-Plate Splines

$$
\begin{gathered}
\phi_{2 m}(r)=r^{2 m} \log r \\
f_{2 m}(s)=(\sqrt{2 s})^{2 m} \log (\sqrt{2 s}) \\
f_{2 m}^{\prime}(s)=2 m(\sqrt{2 s})^{2 m-1} \log (\sqrt{2 s}) / \sqrt{2 s}+(\sqrt{2 s})^{2 m} /(2 s) \\
=2 m f_{2 m-2}(s)+\underbrace{(2 s)^{m-1}}_{=\text {polynomial }}
\end{gathered}
$$

Example: Thin-Plate Splines

$$
\begin{gathered}
\phi_{2 m}(r)=r^{2 m} \log r \\
f_{2 m}(s)=(\sqrt{2 s})^{2 m} \log (\sqrt{2 s}) \\
f_{2 m}^{\prime}(s)=2 m(\sqrt{2 s})^{2 m-1} \log (\sqrt{2 s}) / \sqrt{2 s}+(\sqrt{2 s})^{2 m} /(2 s) \\
=2 m f_{2 m-2}(s)+\underbrace{(2 s)^{m-1}}_{=\text {polynomial }}
\end{gathered}
$$

The polynomial part vanishes in the conditional positive definite setting

Example: Thin-Plate Splines

$$
\begin{gathered}
\phi_{2 m}(r)=r^{2 m} \log r \\
f_{2 m}(s)=(\sqrt{2 s})^{2 m} \log (\sqrt{2 s}) \\
f_{2 m}^{\prime}(s)=2 m(\sqrt{2 s})^{2 m-1} \log (\sqrt{2 s}) / \sqrt{2 s}+(\sqrt{2 s})^{2 m} /(2 s) \\
=2 m f_{2 m-2}(s)+\underbrace{(2 s)^{m-1}}_{=\text {polynomial }}
\end{gathered}
$$

The polynomial part vanishes in the conditional positive definite setting Dealing with powers is clear

Matérn-Sobolev Kernels

$$
\phi_{\nu}(r)=r^{\nu} K_{\nu}(r)
$$

Matérn-Sobolev Kernels

$$
\begin{gathered}
\phi_{\nu}(r)=r^{\nu} K_{\nu}(r) \\
f_{\nu}(s)=(\sqrt{2 s})^{\nu} K_{\nu}(\sqrt{2 s})
\end{gathered}
$$

Matérn-Sobolev Kernels

$$
\begin{gathered}
\phi_{\nu}(r)=r^{\nu} K_{\nu}(r) \\
f_{\nu}(s)=(\sqrt{2 s})^{\nu} K_{\nu}(\sqrt{2 s}) \\
\frac{d}{d z}\left(z^{\nu} K_{\nu}(z)\right)=-z^{\nu} K_{\nu-1}(z)
\end{gathered}
$$

Matérn-Sobolev Kernels

$$
\begin{gathered}
\phi_{\nu}(r)=r^{\nu} K_{\nu}(r) \\
f_{\nu}(s)=(\sqrt{2 s})^{\nu} K_{\nu}(\sqrt{2 s}) \\
\frac{d}{d z}\left(z^{\nu} K_{\nu}(z)\right)=-z^{\nu} K_{\nu-1}(z) \\
f_{\nu}^{\prime}(s)=-(\sqrt{2 s})^{\nu} K_{\nu-1}(\sqrt{2 s}) / \sqrt{2 s}=-f_{\nu-1}(s)
\end{gathered}
$$

Matérn-Sobolev Kernels

$$
\begin{gathered}
\phi_{\nu}(r)=r^{\nu} K_{\nu}(r) \\
f_{\nu}(s)=(\sqrt{2 s})^{\nu} K_{\nu}(\sqrt{2 s}) \\
\frac{d}{d z}\left(z^{\nu} K_{\nu}(z)\right)=-z^{\nu} K_{\nu-1}(z) \\
f_{\nu}^{\prime}(s)=-(\sqrt{2 s})^{\nu} K_{\nu-1}(\sqrt{2 s}) / \sqrt{2 s}=-f_{\nu-1}(s)
\end{gathered}
$$

This would not work without $s=r^{2} / 2$

Matérn-Sobolev Kernels

$$
\begin{gathered}
\phi_{\nu}(r)=r^{\nu} K_{\nu}(r) \\
f_{\nu}(s)=(\sqrt{2 s})^{\nu} K_{\nu}(\sqrt{2 s}) \\
\frac{d}{d z}\left(z^{\nu} K_{\nu}(z)\right)=-z^{\nu} K_{\nu-1}(z) \\
f_{\nu}^{\prime}(s)=-(\sqrt{2 s})^{\nu} K_{\nu-1}(\sqrt{2 s}) / \sqrt{2 s}=-f_{\nu-1}(s)
\end{gathered}
$$

This would not work without $s=r^{2} / 2$
$\nu=m-d / 2 \Rightarrow \nu-1$ means $m \Rightarrow m-1$ or $d \Rightarrow d+2$

Wendland Kernels

$\phi_{d, k}$ in $C^{2 k}$, SPD on \mathbb{R}^{d}, minimal degree $\lfloor d / 2\rfloor+3 k+1$

$$
\begin{aligned}
\phi_{\ell}(r) & :=(1-r)_{+}^{\ell} \\
(I \phi)(r) & :=\int_{r}^{\infty} t \phi(t) d t \\
\phi_{d, k}(r) & :=I^{k} \phi_{\lfloor d / 2\rfloor+k+1}(r) \\
f_{d, k}(s) & :=I^{k} \phi_{\lfloor d / 2\rfloor+k+1}(\sqrt{2 s}) \\
(I \phi)^{\prime}(r) & =-r \phi(r) \\
f_{d, k}^{\prime}(s) & =-\sqrt{2 s} I^{k-1} \phi_{\lfloor d / 2\rfloor+k+1}(\sqrt{2 s}) / \sqrt{2 s} \\
& =-I^{k-1} \phi_{\lfloor(d+2) / 2\rfloor+k-1+1}(\sqrt{2 s}) \\
& =-f_{d+2, k-1}(s)
\end{aligned}
$$

This would not work without $s=r^{2} / 2$

Laplacian

$$
\begin{aligned}
\Delta \phi(r) & =\phi^{\prime \prime}(r)+(d-1) \frac{\phi^{\prime}(r)}{r} \text { (singular!) } \\
\phi(r) & =f\left(r^{2} / 2\right) \\
\phi^{\prime}(r) & =f^{\prime}\left(r^{2} / 2\right) \\
\phi^{\prime \prime}(r) & =r^{2} f^{\prime \prime}\left(r^{2} / 2\right)+f^{\prime}\left(r^{2} / 2\right) \\
\Delta \phi & =r^{2} f^{\prime \prime}\left(r^{2} / 2\right)+d f^{\prime}\left(r^{2} / 2\right)=2 s f^{\prime \prime}(s)+d f^{\prime}(s) \\
\Delta^{2} \phi & =4 s^{2} f^{(4)}(s)+4 s d f^{(3)}(s)+d^{2} f^{\prime \prime}(s)
\end{aligned}
$$

No visible singularities in f-form
Other derivatives via e.g.

$$
\frac{d}{d x} \phi(r)=\phi^{\prime}(r) \frac{x}{r}=r f^{\prime}\left(r^{2} / 2\right) \frac{x}{r}=x f^{\prime}(s)
$$

Theory

General Result

Theorem (Dimension walk)
Radial Fourier transform F_{d} on \mathbb{R}^{d} implies $F_{d+2} f_{p}^{\prime}=-F_{d} f_{p}$

General Result

Theorem (Dimension walk)
Radial Fourier transform F_{d} on \mathbb{R}^{d} implies $F_{d+2} f_{p}^{\prime}=-F_{d} f_{p}$
Closedness Assumption between $\left\{f_{p}\right\}_{p}$ and $\left\{g_{q}\right\}_{q}$

$$
F_{d} f_{p}=g_{A(d, p)}, \quad F_{d} g_{q}=f_{B(d, q)}
$$

General Result

Theorem (Dimension walk)
Radial Fourier transform F_{d} on \mathbb{R}^{d} implies $F_{d+2} f_{p}^{\prime}=-F_{d} f_{p}$
Closedness Assumption between $\left\{f_{p}\right\}_{p}$ and $\left\{g_{q}\right\}_{q}$

$$
F_{d} f_{p}=g_{A(d, p)}, \quad F_{d} g_{q}=f_{B(d, q)}
$$

Theorem:

$$
f_{p}^{\prime}=-F_{d+2} F_{d} f_{p}=-f_{B(d+2, A(d, p))}
$$

General Result

Theorem (Dimension walk)
Radial Fourier transform F_{d} on \mathbb{R}^{d} implies $F_{d+2} f_{p}^{\prime}=-F_{d} f_{p}$
Closedness Assumption between $\left\{f_{p}\right\}_{p}$ and $\left\{g_{q}\right\}_{q}$

$$
F_{d} f_{p}=g_{A(d, p)}, \quad F_{d} g_{q}=f_{B(d, q)}
$$

Theorem:

$$
f_{p}^{\prime}=-F_{d+2} F_{d} f_{p}=-f_{B(d+2, A(d, p))}
$$

No separate derivative program needed

General Result

Theorem (Dimension walk)
Radial Fourier transform F_{d} on \mathbb{R}^{d} implies $F_{d+2} f_{p}^{\prime}=-F_{d} f_{p}$
Closedness Assumption between $\left\{f_{p}\right\}_{p}$ and $\left\{g_{q}\right\}_{q}$

$$
F_{d} f_{p}=g_{A(d, p)}, \quad F_{d} g_{q}=f_{B(d, q)}
$$

Theorem:

$$
f_{p}^{\prime}=-F_{d+2} F_{d} f_{p}=-f_{B(d+2, A(d, p))}
$$

No separate derivative program needed
Derivatives and dimensions may be fractional

Proof of Dimension Walk

Radial Fourier transform F_{ν} for $\nu=(d-2) / 2$:

$$
\begin{aligned}
\left(F_{\nu} f_{p}\right)(t) & =\int_{0}^{\infty} f_{p}(s) s^{\nu} H_{\nu}(s t) d s \\
f_{p}(s) & =\int_{0}^{\infty}\left(F_{\nu} f_{p}\right)(t) t^{\nu} H_{\nu}(t s) d t \\
(z / 2)^{-\nu} J_{\nu}(z) & =H_{\nu}\left(-z^{2} / 4\right)=\sum_{k=0}^{\infty} \frac{\left(-z^{2} / 4\right)^{k}}{k!\Gamma(k+\nu+1)} \\
H_{\nu}^{\prime} & =-H_{\nu+1}, \quad d \Rightarrow d+2 \\
f_{p}^{\prime}(s) & =\int_{0}^{\infty}\left(F_{\nu} f_{p}\right)(t) t^{\nu} t H_{\nu}^{\prime}(t s) d t \\
& =-\int_{0}^{\infty}\left(F_{\nu} f_{p}\right)(t) t^{\nu+1} H_{\nu+1}^{\prime}(t s) d t \\
& =-F_{\nu+1}^{-1} F_{\nu}\left(f_{p}\right)(s) \\
F_{\nu+1} f_{p}^{\prime} & =-F_{\nu} f_{p}
\end{aligned}
$$

Remarks on Implementation

Matrix Formulation

Kernel matrix $\phi\left(\left\|x_{j}-y_{k}\right\|_{2}\right)=f\left(\left\|x_{j}-y_{k}\right\|_{2}^{2} / 2\right)$
function dsqh=distsqh (X, Y)
\% X and Y are matrices with points as rows $n X=$ length ($\mathrm{X}(:, 1)$) ; nY=length (Y(:, 1));
$X \operatorname{sh}=\operatorname{sum}\left((X . * X)^{\prime}\right) / 2$; $Y \operatorname{sh}=\operatorname{sum}\left((Y . * Y)^{\prime}\right) / 2$;
dsqh=repmat (Xsh', 1, nY) +repmat (Ysh, nX, 1) $-X * Y^{\prime}$;

Matrix Formulation

Kernel matrix $\phi\left(\left\|x_{j}-y_{k}\right\|_{2}\right)=f\left(\left\|x_{j}-y_{k}\right\|_{2}^{2} / 2\right)$
Write f as program on a matrix $S=\left(\left\|x_{j}-y_{k}\right\|_{2}^{2} / 2\right)$

```
function dsqh=distsqh(X, Y)
% X and Y are matrices with points as rows
nX=length(X(:,1));nY=length(Y(:,1));
Xsh=sum((X.*X)')/2; Ysh=sum((Y.*Y)')/2;
dsqh=repmat(Xsh',1,nY)+repmat(Ysh,nX,1)-X*Y';
```


Matrix Formulation

Kernel matrix $\phi\left(\left\|x_{j}-y_{k}\right\|_{2}\right)=f\left(\left\|x_{j}-y_{k}\right\|_{2}^{2} / 2\right)$
Write f as program on a matrix $S=\left(\left\|x_{j}-y_{k}\right\|_{2}^{2} / 2\right)$
Use $\left\|x_{j}-y_{k}\right\|_{2}^{2} / 2=\left\|x_{j}\right\|_{2}^{2} / 2+\left\|y_{k}\right\|^{2} / 2-\left(x_{j}, y_{k}\right)$

```
function dsqh=distsqh(X, Y)
% X and Y are matrices with points as rows
nX=length(X(:,1));nY=length(Y(:,1));
Xsh=sum((X.*X)')/2; Ysh=sum((Y.*Y)')/2;
dsqh=repmat(Xsh',1,nY)+repmat(Ysh,nX,1)-X*Y';
```


Matrix Formulation

Kernel matrix $\phi\left(\left\|x_{j}-y_{k}\right\|_{2}\right)=f\left(\left\|x_{j}-y_{k}\right\|_{2}^{2} / 2\right)$
Write f as program on a matrix $S=\left(\left\|x_{j}-y_{k}\right\|_{2}^{2} / 2\right)$
Use $\left\|x_{j}-y_{k}\right\|_{2}^{2} / 2=\left\|x_{j}\right\|_{2}^{2} / 2+\left\|y_{k}\right\|^{2} / 2-\left(x_{j}, y_{k}\right)$
No square roots, no loops for this

```
function dsqh=distsqh(X, Y)
% X and Y are matrices with points as rows
nX=length(X(:,1)); nY=length(Y(:,1));
Xsh=sum((X.*X)')/2; Ysh=sum((Y.*Y)')/2;
dsqh=repmat (Xsh',1,nY)+repmat(Ysh,nX,1)-X*Y';
```


Calculation of f-Form

$$
S=d i s t s q h(X, Y) ;
$$

Calculation of f-Form

$$
\begin{aligned}
& S=\text { dist } \mathrm{sqh}(\mathrm{X}, \mathrm{Y}) ; \\
& \mathrm{F}=\mathrm{frbf}(\mathrm{~S}, \mathrm{k}) \text { calculates } f^{k}(S) \text { on matrix } S
\end{aligned}
$$

Calculation of f-Form

S=distsqh (X,Y);
$\mathrm{F}=\mathrm{frbf}(\mathrm{S}, \mathrm{k})$ calculates $f^{k}(S)$ on matrix S
RBF type, scale, parameters controlled by globals

Calculation of f-Form

S=distsqh (X,Y);
$\mathrm{F}=\mathrm{frbf}(\mathrm{S}, \mathrm{k})$ calculates $f^{k}(S)$ on matrix S
RBF type, scale, parameters controlled by globals
E.g.: Laplacian is $d * \operatorname{frbf}(S, 1)+2 * S . * f r b f(S, 2)$

Summary and Outlook

Summary

You don't need to program derivatives, if you program a whole family of RBFs that is closed under double Fourier transforms wrt. different dimensions

Summary

You don't need to program derivatives, if you program a whole family of RBFs that is closed under double Fourier transforms wrt. different dimensions
Available as Technical Report:
http://num.math.uni-goettingen.de/schaback/ research/papers/MPfKBM.pdf

Summary

You don't need to program derivatives, if you program a whole family of RBFs that is closed under double Fourier transforms wrt. different dimensions
Available as Technical Report:
http://num.math.uni-goettingen.de/schaback/ research/papers/MPfKBM.pdf
Version of 2011, dating back to 2008

Caveat

For low order Wendland functions:

Caveat

For low order Wendland functions:
numerical problems at zero

Caveat

For low order Wendland functions:
numerical problems at zero
Calculating Δ needs $f_{d, k}^{\prime}=-f_{d+2, k-1}, f_{d, k}^{\prime \prime}=f_{d+4, k-2}$

Caveat

For low order Wendland functions:
numerical problems at zero
Calculating Δ needs $f_{d, k}^{\prime}=-f_{d+2, k-1}, f_{d, k}^{\prime \prime}=f_{d+4, k-2}$
For $k=1$ the function $f_{d, k}$ is in $C^{2}=C^{2 k}$, but calculation goes down to $f_{d+4,-1}$

Caveat

For low order Wendland functions:
numerical problems at zero
Calculating Δ needs $f_{d, k}^{\prime}=-f_{d+2, k-1}, f_{d, k}^{\prime \prime}=f_{d+4, k-2}$
For $k=1$ the function $f_{d, k}$ is in $C^{2}=C^{2 k}$, but calculation goes down to $f_{d+4,-1}$
Example: $d=2, k=1$

$$
\phi_{6,-1}(r)=l^{-1} \phi_{3}(r)=-\frac{1}{r} \frac{d}{d r}(1-r)_{+}^{3}=\frac{3(1-r)_{+}^{2}}{r}
$$

Caveat

For low order Wendland functions:
numerical problems at zero
Calculating Δ needs $f_{d, k}^{\prime}=-f_{d+2, k-1}, f_{d, k}^{\prime \prime}=f_{d+4, k-2}$
For $k=1$ the function $f_{d, k}$ is in $C^{2}=C^{2 k}$, but calculation goes down to $f_{d+4,-1}$
Example: $d=2, k=1$

$$
\phi_{6,-1}(r)=l^{-1} \phi_{3}(r)=-\frac{1}{r} \frac{d}{d r}(1-r)_{+}^{3}=\frac{3(1-r)_{+}^{2}}{r}
$$

Theory is OK: Cancellation of singularities at zero

Caveat

For low order Wendland functions:
numerical problems at zero
Calculating Δ needs $f_{d, k}^{\prime}=-f_{d+2, k-1}, f_{d, k}^{\prime \prime}=f_{d+4, k-2}$
For $k=1$ the function $f_{d, k}$ is in $C^{2}=C^{2 k}$, but calculation goes down to $f_{d+4,-1}$
Example: $d=2, k=1$

$$
\phi_{6,-1}(r)=l^{-1} \phi_{3}(r)=-\frac{1}{r} \frac{d}{d r}(1-r)_{+}^{3}=\frac{3(1-r)_{+}^{2}}{r}
$$

Theory is OK: Cancellation of singularities at zero
Laplacian needs $f_{2,1}^{\prime \prime}=r^{2} \phi_{6,-1}(r)$

Open Problems

Deal with Wendland case properly

Open Problems

Deal with Wendland case properly
Make routines more efficient, e.g. Laplacian via $d \star f r b f(S, 1)+2 \star S . \star f r b f(S, 2)$

Open Problems

Deal with Wendland case properly
Make routines more efficient, e.g. Laplacian via $d * f r b f(S, 1)+2 * S . * f r b f(S, 2)$

Dear with sparsity properly

Open Problems

Deal with Wendland case properly
Make routines more efficient, e.g. Laplacian via $d * f r b f(S, 1)+2 * S . * f r b f(S, 2)$

Dear with sparsity properly
Implement basis transformations

Open Problems

Deal with Wendland case properly
Make routines more efficient, e.g. Laplacian via $d \star f r b f(S, 1)+2 \star S . * f r b f(S, 2)$

Dear with sparsity properly
Implement basis transformations
Extend to a general toolkit

Thank You!

For references, see
http://www.num.math.uni-goettingen.de/schaback/research.html

